
Kubernetes For Beginners – An Introduction
Part 3
Charles Wimmer

28 October 2019

This document provides an introduction to Kubernetes for the uniniti-
ated. It is intended to give application developers enough information
to get them started with Kubernetes deployments. This is part three in
a series.

1 Container Lifecycle

Kubernetes provides application administrators with two hooks into
the container lifecycle: PostStart and PreStop.1 These hooks have 1 Container lifecycle hooks.

https://kubernetes.io/

docs/concepts/containers/

container-lifecycle-hooks/. Ac-
cessed: 2019-10-15

two implementations. A hook may run a specific command inside
the namespaces of the container, or it may execute an HTTP request
against a port on the container.

Immediately after Kubelet creates the container, it fires the Post-
Start hook. There is no guarantee it fires before the container’s en-
trypoint. There is also no guarantee that it fires after the container’s
entrypoint. Due to these constraints, the use of the HTTP request
as a PostStart hook is not consistent. If the request fires before the
container has initialized the HTTP service, the request will not be
received.

The PreStop hook is a bit more flexible than the PostStart hook.
Kubelet fires the PreStop hook immediately before container termina-
tion. By default, it is blocking. That is to say that the container does
not get terminated until after the PreStop hook completes. Hooks
must complete within the container’s termination grace period.

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/


kubernetes for beginners – an introduction part 3 2

apiVersion: v1

kind: Pod

metadata:

name: lifecycle-demo

spec:

containers:

- name: lifecycle-demo-container

image: nginx

lifecycle:

postStart:

exec:

command: ["/bin/sh", "-c", "echo Hello from the postStart handler > /usr/share/message"]

preStop:

exec:

command: ["/usr/sbin/nginx","-s","quit"]

Figure 1: Container Lifecycle Example

2 Authenticating to the Kubernetes API

When accessing the Kubernetes API, Kubernetes either authenticates
it as a Service Account or Normal User; otherwise, the request is
considered anonymous.2 2 Authenticating. https://

kubernetes.io/docs/reference/

access-authn-authz/authentication/.
Accessed: 2019-10-16

User accounts are intended to represent humans, and the Kuber-
netes API does not manage them. The Kubernetes API does not have
representations of Normal user accounts. User accounts are authen-
ticated by mechanisms outside of Kubernetes, as well. User accounts
have a cluster scope; they are not tied to Namespaces.

Application Authors create Service Accounts by calls to the Ku-
bernetes API. They have a record and authentication information
stored in the Kubernetes database. Application Authors can include
definitions of Service Accounts when creating applications. Service
Accounts are Namespace scoped objects.

The table below summarizes the differences between Normal user
accounts and Service Accounts.

Normal User Service Account

Typically used for Humans Pods
Scope Global Namespace
Included in application definition? No Yes
Managed by Kubernetes No Yes –
Typically authenticated by External entity (e.g. LDAP/AD) Internal (e.g. Tokens)
Represented by Kubernetes Object No Yes

Three controllers hosted by the Controller Manager and API

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/


kubernetes for beginners – an introduction part 3 3

Server automate the lifecycle of Service Accounts.3 3 Managing service accounts.
https://kubernetes.io/docs/

reference/access-authn-authz/

service-accounts-admin/. Accessed:
2019-10-18

2.1 Service Account Admission Controller

The Service Account Admission Controller is a component of the
API Server. It acts on each call to add or update a Pod to ensure the
following:

• Each Pod must have a Service Account. If the Pod definition does
not, the controller sets the Service Account to Default

• If a Pod does already have a Service Account defined, the con-
troller ensures the Service Account exists. If the Service account
does not exist, the controller rejects the Pod.

• If the Pod definition does not override the ImagePullSecrets field,
then the controller adds the ImagePullSecrets from the Service
Account.

• The controller adds a Volume to the Pod containing the token for
API access.

• The controller adds a volumeSource to the container mounting the
token for API access.

2.2 Token Controller

The Token Controller runs as part of the Controller Manager. It per-
forms the following functions:

• Watches Service Account creation. When it observes a new Service
Account, it ensures a matching API token secret exists.

• Watches Service Account deletion. When it observes a deletion, it
removes the matching API token secret.

• Watches Secret creation of type ServiceAccountToken. When it
observes a new Secret, it creates an API token for the Secret.

• Watches Secret deletion of type ServiceAccountToken. It invali-
dates API tokens as necessary.

The Token Controller signs tokens with a specific key. The same
key must be used by the API Server to validate the tokens.

2.3 Service Account Controller

The Service Account Controller runs as part of the Controller Man-
ager. It watches Namespaces and ensures each Namespace has a
Default Service Account.

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/


kubernetes for beginners – an introduction part 3 4

3 Container Compute Resource Management

At its core, Kubernetes is a resource management system. All the
nodes of a cluster contribute CPU, memory, memory hugepages,
disk, network, and potentially other resources to a collective pool.
The Kubernetes scheduler matches resource requests with available
resources. Kubelet and the container runtime ensure the workloads
do not exceed those resource requests.

When requesting resources, the application author specifies a
Request and a Limit. The Request is the minimum resource required
by the Pod before the kube-scheduler assigns the Pod to a node. The
Limit is the maximum amount of resources a pod should be allowed
to use before taking corrective action.

---

apiVersion: v1

kind: Pod

metadata:

name: pod-example

spec:

containers:

- name: ubuntu

image: ubuntu:trusty

command: ["echo"]

args: ["Hello World"]

resources:

limits:

cpu: "1"

memory: 200Mi

hugepages-2Mi: 80Mi

ephemeral-storage: 100Gi

requests:

cpu: 500m

memory: 100Mi

hugepages-2Mi: 80Mi

ephemeral-storage: 1Ti

Figure 2: Example of Pod with resource
requests

3.1 Handling Resource Limits

When creating a container with CPU limits, the container runtime is
instructed to create a Cgroup with a hard cap. The Cgroup constrains
the Pod from using more than its allocation of CPU.

When creating a container with a memory limit, a container is



kubernetes for beginners – an introduction part 3 5

eligible for termination when exceeding this value. If killed due to
this out of memory condition, Kubelet will restart the container just
like any other container failure.

When creating a Pod with a hugepages limit, the Request and
Limit must be equal. Kubelet assigns hugepages to a Pod at startup.
Overcommitting hugepages is not allowed. If an application requests
more than its hugepages Limit, the allocation will fail.

When creating a Pod with ephemeral storage limits, the requested
amount is considered by the scheduler when assigning a Pod to a
Node. If a Pod’s usage of ephemeral storage exceeds the sum of the
container limits, Kubelet evicts the Pod from the node. The workload
controller that started the Pod will be notified it is in a final state and
start a new Pod to replace it.

Figure 3: Namespaces and Volumes in a
Pod

4 Pod Quality of Service Classes

When scheduled, each pod is placed into one of three Quality of
Service (QoS) classes.4 The classes are: 4 Configure quality of service for

pods. https://kubernetes.io/docs/

tasks/configure-pod-container/

quality-service-pod/. Accessed:
2019-10-19

• Guaranteed

• Burstable

• BestEffort

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/


kubernetes for beginners – an introduction part 3 6

4.1 Guaranteed QoS

To be considered in the Guaranteed QoS, a pod must meet the fol-
lowing criteria:

• Every container in the Pod must have a CPU Request set.

• Every container in the pod must have a CPU Limit set.

• The CPU Request for every container must be equal to the CPU
Limit for that container.

• Every container in the Pod must have a memory Request set.

• Every container in the pod must have a memory Limit set.

• The memory Request for every container must be equal to the
memory Limit for that container.

Kubelet kills a container when its resource usage exceeds its re-
source requests. A Pod in the Guaranteed QoS may not have its con-
tainers killed unless the containers exceed their resource limit.

CPU is a compressible resource. That is to say, the Cgroup for each
container can stop a container from using more than the requested
limit. Since the CPU request and limit are equal, Kubelet may not
select containers to be killed because of CPU.

Memory is not a compressible resource. Kubelet periodically
checks memory usage of a container. If the memory use of each
container stays within the limit, containers may not be killed due
to memory.

Kubelet does not kill Containers of Pods inside the Guaranteed
QoS unless they exceed their memory (or other incompressible re-
sources) limit.5 5 Kubelet may evict Pods in the Guaran-

teed QoS if the node has DiskPressure



kubernetes for beginners – an introduction part 3 7

$ cat guaranteed-qos.yaml

apiVersion: v1

kind: Pod

metadata:

name: guaranteed-qos

namespace: test-qos

spec:

containers:

- name: qos-nginx

image: nginx

resources:

limits:

memory: "100Mi"

cpu: "800m"

requests:

memory: "100Mi"

cpu: "800m"

$ kubectl create ns test-qos

namespace/test-qos created

$ kubectl apply -f guaranteed-qos.yaml

pod/guaranteed-qos created

$ kubectl get pod -n test-qos guaranteed-qos -o yaml | grep qosClass

qosClass: Guaranteed

Figure 4: Guaranteed QoS Example



kubernetes for beginners – an introduction part 3 8

4.2 Burstable QoS

To be considered in the Burstable QoS, a pod must meet the follow-
ing criteria:

• Pod does not meet the criteria for Guaranteed QoS.

• Pod has one or more resource limit or request set.

Kubelet may kill containers in Pods in the Burstable QoS when
they exceed their resource requests. Kubelet kills containers in the
Burstable QoS are only after containers in Pods in the Best Effort
QoS.

$ cat burstable-qos.yaml

apiVersion: v1

kind: Pod

metadata:

name: burstable-qos

namespace: test-qos

spec:

containers:

- name: qos-nginx

image: nginx

resources:

requests:

memory: "100Mi"

cpu: "800m"

$ kubectl create ns test-qos

namespace/test-qos created

$ kubectl apply -f burstable-qos.yaml

pod/burstable-qos created

$ kubectl get pod -n test-qos burstable-qos -o yaml | grep qosClass

qosClass: Burstable

Figure 5: Burstable QoS Example

4.3 Best Effort QoS

Pods are placed in the Best Effort QoS when none of their containers
express a resource request or limit.

Kubelet may kill containers in Pods in the Best Effort QoS when
there is any contention for any resource. Kubelet kills containers in
the Best Effort QoS before any containers in the other QoS classes.



kubernetes for beginners – an introduction part 3 9

$ cat best-effort-qos.yaml

apiVersion: v1

kind: Pod

metadata:

name: best-effort-qos

namespace: test-qos

spec:

containers:

- name: qos-nginx

image: nginx

$ kubectl create ns test-qos

namespace/test-qos created

$ kubectl apply -f best-effort-qos.yaml

pod/best-effort-qos created

$ kubectl get pod -n test-qos best-effort-qos -o yaml | grep qosClass

qosClass: BestEffort

Figure 6: Best Effort QoS Example

5 Eviction Handling

In order to preserve the stability of nodes, the Kubelet must evict
pods when critical compute resources become low.6 Kubernetes 6 Configure out of resource han-

dling. https://kubernetes.io/

docs/tasks/administer-cluster/

out-of-resource/. Accessed: 2019-10-
20

honors several eviction signals when making this decision.

Eviction Signal Description Default Value

memory.available Difference between node capacity and current working set 100Mi
nodefs.available Disk space free on filesystems used for logs and ephemeral volumes <10%
nodefs.inodesFree Inodes free on filesystems used for logs and ephemeral volumes <5%
imagefs.available Disk space free on filesystems used for container images <15%
imagefs.inodes.Free Inodes free on filesystems used for container images <5%

6 Soft Versus Hard Eviction Thresholds

Kubelet has automatic built-in hard eviction thresholds. Also, oper-
ators may optionally configure it with soft eviction thresholds and
a grace period. When soft thresholds are reached, Kubelet waits for
a grace period before taking corrective action. If usage reaches hard
thresholds, Kubelet takes corrective action immediately.

When Kubelet finally decides it needs to reclaim node resources, it
takes several steps based on the type of signal that triggers the evic-
tion. If the resource is one of the disk-based signals, it first attempts
to free up space consumed by dead containers. If the signal has not
been satisfied, then unused container images are deleted.

https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/


kubernetes for beginners – an introduction part 3 10

If Kubelet is not able to satisfy the eviction signal in any other way,
it ranks Pods for eviction.

1. Pods in the Burstable and BestEffort QoS whose usage exceed
requests are ranked in order of Priority7 and then usage above 7 Pod priority and preemp-

tion. https://kubernetes.io/

docs/concepts/configuration/

pod-priority-preemption/. Accessed:
2019-10-20

request.

2. After evicting all pods whose usage exceeds requests, Pods in the
Burstable QoS are evicted in order of Priority.

3. Pods in the Guaranteed QoS are evicted last, in order of Priority.

Since Pods in the Guaranteed QoS have limits and requests that
are equal, Kubelet only evicts them when system daemons exceed the
resource amounts reserved for them by Kubelet.

References

Authenticating. https://kubernetes.io/docs/reference/

access-authn-authz/authentication/. Accessed: 2019-10-16.

Container lifecycle hooks. https://kubernetes.io/docs/concepts/

containers/container-lifecycle-hooks/. Accessed: 2019-10-15.

Configure out of resource handling. https://kubernetes.io/docs/

tasks/administer-cluster/out-of-resource/. Accessed: 2019-10-
20.

Managing service accounts. https://kubernetes.io/docs/

reference/access-authn-authz/service-accounts-admin/. Ac-
cessed: 2019-10-18.

Pod priority and preemption. https://kubernetes.io/docs/

concepts/configuration/pod-priority-preemption/. Accessed:
2019-10-20.

Configure quality of service for pods. https://kubernetes.io/

docs/tasks/configure-pod-container/quality-service-pod/.
Accessed: 2019-10-19.

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

	Container Lifecycle
	Authenticating to the Kubernetes API
	Container Compute Resource Management
	Pod Quality of Service Classes
	Eviction Handling
	Soft Versus Hard Eviction Thresholds

