
Kubernetes For Beginners – An Introduction
Part 2
Charles Wimmer

12 October 2019

This document provides an introduction to Kubernetes for the uniniti-
ated. It is intended to give application developers enough information
to get them started with Kubernetes deployments. This is part two in a
series.

1 PersistentVolumes

PersistentVolumes are part of the storage subsystem in Kubernetes.
They provide a set of APIs that abstract the implementation of the
storage from the way it is consumed.1 1 Persistent volumes. https:

//kubernetes.io/docs/concepts/

storage/persistent-volumes/. Ac-
cessed: 2019-10-12

PersistentVolumes are storage resources that have a life cycle in-
dependent from the Pods that use it. A PersistentVolume may exist
before Pods request it. Kubernetes may retain a PersistentVolume
after destroying a pod that requested it.

apiVersion: v1

kind: PersistentVolume

metadata:

name: my-pv

spec:

capacity:

storage: 100Gi

volumeMode: Filesystem

accessModes:

- ReadWriteOnce

persistentVolumeReclaimPolicy: Recycle

storageClassName: nfs-filer

mountOptions:

- hard

- nfsvers=4.1

nfs:

path: /my/nfs/path

server: 192.168.1.1

Figure 1: PersistentVolume

PersistentVolumes are cluster scoped resources similar to nodes.
PersistentVolumeClaims are Namespace scoped resources. When

Kubernetes matches a PersistentVolumeClaim to a PersistentVolume,

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

kubernetes for beginners – an introduction part 2 2

that volume is bound to a Namespace.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: my-pvc

spec:

accessModes:

- ReadWriteOnce

volumeMode: Filesystem

resources:

requests:

storage: 100Gi

storageClassName: nfs-filer

Figure 2: PersistentVolumeClaim

Once bound to a Namespace, a PersistentVolume may then be
mounted into a pod as a Volume.

apiVersion: v1

kind: Pod

metadata:

name: my-pod

spec:

containers:

- name: myfrontend

image: nginx

volumeMounts:

- mountPath: "/var/logs"

name: my-logs

volumes:

- name: my-logs

persistentVolumeClaim:

claimName: my-pvc

Figure 3: Pod using ConfigMap item as
file

PersistentVolumes may be created in two ways, statically or dy-
namically. Static creation is when an administrator creates Persisten-
Volumes. Dynamic creation occurs on-demand after a StorageClass
is created and configured to support it. Kubernetes creates Persis-
tentVolumes after the PersistentVolumeClaim is created, rather than
before it.

Upon deletion, Kubernetes applies its persistentVolumeReclaim-

kubernetes for beginners – an introduction part 2 3

Policy. The valid values for this attribute are Retain, Recycle or
Delete.

Application authors should use the Retain policy when describing
a shared volume that is intended to be passed around to many pods
over its lifetime. For example, if an NFS server had a large, static
dataset on one of its mount points. The application author could
instruct Kubernetes to retain the dataset.

Recycle instructs Kubernetes to do a simple cleaning such as rm

-rf on the filesystem before handing it to the next consumer.
Delete instructs Kubernetes to delete the backing store when a Pod

releases a claim.
TODO: Insert two diagrams of the PV lifecycle. One for static and

one for dynamic.

2 DaemonSets

A DaemonSet defines a Pod that should be run on all nodes of a
cluster.2 The DaemonSet definition may restrict which nodes to run 2 Daemonset. https://kubernetes.

io/docs/concepts/workloads/

controllers/daemonset/. Accessed:
2019-10-12

on based on matching a NodeSelector.3 Nodes may reject Pods from

3 Assigning pods to nodes. https:

//kubernetes.io/docs/concepts/

configuration/assign-pod-node/.
Accessed: 2019-10-12

running by applying Taints4 which the DaemonSet does not Tolerate.

4 Taints and tolerations. https:

//kubernetes.io/docs/

concepts/configuration/

taint-and-toleration/. Accessed:
2019-10-12

TODO: Cite some examples for DaemonSet

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

kubernetes for beginners – an introduction part 2 4

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: fluentd-elasticsearch

labels:

k8s-app: fluentd-logging

spec:

selector:

matchLabels:

name: fluentd-elasticsearch

template:

metadata:

labels:

name: fluentd-elasticsearch

spec:

nodeSelector:

tolerations:

- key: node-role.kubernetes.io/master

effect: NoSchedule

containers:

- name: fluentd-elasticsearch

image: k8s.gcr.io/fluentd-elasticsearch:1.20

volumeMounts:

- name: varlog

mountPath: /var/log

- name: varlibdockercontainers

mountPath: /var/lib/docker/containers

readOnly: true

volumes:

- name: varlog

hostPath:

path: /var/log

- name: varlibdockercontainers

hostPath:

path: /var/lib/docker/containers

Figure 4: DaemonSet

kubernetes for beginners – an introduction part 2 5

3 StatefulSets

Similar to Deployments, StatefulSets are workload controllers that
launch a similar set of Pods. Unlike a Deployment, StatefulSets pro-
vide guarantees about ordering, uniqueness, and network identity of
those pods.5 5 Statefulsets. https://kubernetes.

io/docs/concepts/workloads/

controllers/statefulset/. Accessed:
2019-10-12

StatefulSets create Pods sequentially in order {0..N-1}. StatefulSets
delete Pods sequentially in reverse order {N-1..0}. Before starting
up to the next Pod, StatefulSets guarantee that all predecessors are
Running and Ready. Before terminating a Pod, StatefulSets guarantee
all successors have finished terminating.

StatefulSets provide a unique, consistent network identity for each
Pod. It does this by providing a unique DNS entry for each Pod. To
begin with, each StatefulSet must be associated with a Service. Given
this relationship, each Pod in a StatefulSet is assigned a DNS record
of the form:

${STATEFULSET_NAME}-${ORDINAL}.${SERVICE}.${NAMESPACE}.svc.cluster.local.

For example, the third ordinal in a StatefulSet named ’broker’ which
is associated with a Service named ’kafka’ started in the ’platform’
Namespace would have the DNS record

broker-3.kafka.platform.svc.cluster.local.

Application Authors may change some of the guarantees about or-
dering. StatefulSets have a field named podManagementPolicy which
defaults to OrderedReady. When set to the default, the ordering char-
acteristics described above apply. When set to Parallel, all Pods are
launched and terminated in parallel. The ordering guarantees are
relaxed.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

kubernetes for beginners – an introduction part 2 6

apiVersion: v1

kind: Service

metadata:

name: nginx

labels:

app: nginx

spec:

ports:

- port: 80

name: web

clusterIP: None

selector:

app: nginx

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: web

spec:

selector:

matchLabels:

app: nginx # has to match .spec.template.metadata.labels

serviceName: "nginx"

replicas: 3 # by default is 1

template:

metadata:

labels:

app: nginx # has to match .spec.selector.matchLabels

spec:

terminationGracePeriodSeconds: 10

containers:

- name: nginx

image: k8s.gcr.io/nginx-slim:0.8

ports:

- containerPort: 80

name: web

volumeMounts:

- name: www

mountPath: /usr/share/nginx/html

volumeClaimTemplates:

- metadata:

name: www

spec:

accessModes: ["ReadWriteOnce"]

storageClassName: "my-storage-class"

resources:

requests:

storage: 1Gi

Figure 5: StatefulSet Example

kubernetes for beginners – an introduction part 2 7

4 Jobs

Kubernetes supports the concept of a Job that is launched and runs
until completion.6 The Job controller implements a pattern that may 6 Jobs - run to completion.

https://kubernetes.io/docs/

concepts/workloads/controllers/

jobs-run-to-completion/. Accessed:
2019-10-12

be used by typical batch jobs.
This controller is well suited to a variety of workloads. Here are

some examples:

• Non-parallel: The Job controller starts one Pod. Job is complete
when Pod is complete.

• Parallel with fixed completion count: Job controller launches mul-
tiple Pods. One Pod must complete for each partition.

• Parallel with a work queue: Multiple pods launched. Job is com-
plete when one pod exits successfully.

• Deadline: A Job controller kills a Pod after it has been running for
a defined number of seconds.

Application authors may configure Job controllers in how they
handle Pod and container failures. The restartPolicy field may be
set to OnFailure or Never. Jobs are not appropriate for Pods that
should run continuously. Consider a Deployment for those work-
loads. The backoffLimit field is used to configure the number of Pod
restarts that the Job controller should attempt.

apiVersion: batch/v1

kind: Job

metadata:

name: pi

spec:

template:

spec:

containers:

- name: pi

image: perl

command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never

backoffLimit: 4

Figure 6: Job Example

5 CronJobs

The CronJob controller is closely related to the Job controller. A Cron-
Job launches a Job at specific times.7 It may be configured to launch a 7 Cronjob. https://kubernetes.

io/docs/concepts/workloads/

controllers/cron-jobs/. Accessed:
2019-10-12

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

kubernetes for beginners – an introduction part 2 8

Job once or repeated at specific times.
The CronJob does not have firm guarantees about launching jobs.

Jobs are created “about once” per period. Due to the distributed
nature of this controller, the following edge cases may occur:

• CronJob controller may create two Jobs.

• CronJob controller may create zero Jobs.

While these are rare edge cases, each Job must be able to handle
these conditions.

apiVersion: batch/v1beta1

kind: CronJob

metadata:

name: periodic-pi

spec:

schedule: "*/1 * * * *"

jobTemplate:

spec:

template:

spec:

containers:

- name: pi

image: perl

command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never

backoffLimit: 4

Figure 7: CronJob Example

6 Container Health Checks

Kubernetes keeps distributed applications up and running. By de-
fault, this means ensuring the containers defined in a Pod continue
to run. Sometimes applications enter a state where the application
is unhealthy even though the processes are still running. Sometimes
an application is healthy, but is temporarily overloaded and should
not be asked to serve any more clients. Kubernetes has extension
points that allow application authors to define what a healthy, well-
behaving system looks like.8 Using this information, Kubernetes has 8 Configure liveness, readi-

ness and startup probes.
https://kubernetes.io/docs/

tasks/configure-pod-container/

configure-liveness-readiness-startup-probes/.
Accessed: 2019-10-12

more tools to ensure the health of the application.
Three user-configurable probes inform Kubernetes about an appli-

cation’s health.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

kubernetes for beginners – an introduction part 2 9

An application author may define a livenessProbe that describes
if a container is healthy. If a livenessProbe fails, Kubernetes kills and
restarts the container.

An application author may define a readinessProbe that describes
if a container is capable of handline more load. If the readinessProbe
fails, Kubernetes removes it from the list of Endpoints in the Service
matching the Pod.

An application author may define a startupProbe9 that describes 9 startupProbes are available in Ku-
beretes 1.16 and newerif a container has completed its startup process. If a container has

startupProbe defined, it does not use the livenessProbe on startup.
After the startupProbe succeeds once, the livenessProbe takes over.

An application author may configure each of the probe types with
one of three types of tests. HTTP(S), TCP, or Container Exec. For an
HTTP probe, any HTTP response code greater or equal to 200 and
less than 400 indicates success. For a TCP probe, a successful three-
way handshake10 indicates health. A Container Exec probe launches 10 Handshaking. https://en.

wikipedia.org/wiki/Handshaking.
Accessed: 2019-10-12

a process from inside the container. If that process returns a zero
result code, the container is considered healthy.

An application author may configure each probe with timeouts
and retries as appropriate.

apiVersion: v1

kind: Pod

metadata:

labels:

test: liveness

name: liveness-exec

spec:

containers:

- name: liveness

image: k8s.gcr.io/busybox

args:

- /bin/sh

- -c

- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600

livenessProbe:

exec:

command:

- cat

- /tmp/healthy

initialDelaySeconds: 5

periodSeconds: 5

Figure 8: Container Exec Probe Exam-
ple

https://en.wikipedia.org/wiki/Handshaking
https://en.wikipedia.org/wiki/Handshaking

kubernetes for beginners – an introduction part 2 10

apiVersion: v1

kind: Pod

metadata:

labels:

test: liveness

name: liveness-http

spec:

containers:

- name: liveness

image: k8s.gcr.io/liveness

args:

- /server

livenessProbe:

httpGet:

path: /healthz

port: 8080

httpHeaders:

- name: Custom-Header

value: Awesome

initialDelaySeconds: 3

periodSeconds: 3

Figure 9: HTTP Probe Example

kubernetes for beginners – an introduction part 2 11

apiVersion: v1

kind: Pod

metadata:

name: goproxy

labels:

app: goproxy

spec:

containers:

- name: goproxy

image: k8s.gcr.io/goproxy:0.1

ports:

- containerPort: 8080

readinessProbe:

tcpSocket:

port: 8080

initialDelaySeconds: 5

periodSeconds: 10

livenessProbe:

tcpSocket:

port: 8080

initialDelaySeconds: 15

periodSeconds: 20

Figure 10: TCP Probe Example

kubernetes for beginners – an introduction part 2 12

7 NetworkPolicies

By default, Kubernetes does not isolate Pods at the network level.
All Pods may access network endpoints both within and outside the
cluster. NetworkPolicies allow the application author to define which
endpoints may be accessed by which Pods.

Conceptually, NetworkPolicies implement a Pod based firewall.
When network policies are defined, they select zero or more Pods.
When a NetworkPolicy selects a Pod, Kubernetes adds the rules in
the policy to the rules for the Pod. By default, Pods accept traffic
from any source. If a NetworkPolicy selects a pod, Kubernetes rejects
all traffic unless it is explicitly allowed by policy.

kubernetes for beginners – an introduction part 2 13

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

name: test-network-policy

namespace: default

spec:

podSelector:

matchLabels:

role: db

policyTypes:

- Ingress

- Egress

ingress:

- from:

- ipBlock:

cidr: 172.17.0.0/16

except:

- 172.17.1.0/24

- namespaceSelector:

matchLabels:

project: myproject

- podSelector:

matchLabels:

role: frontend

ports:

- protocol: TCP

port: 6379

egress:

- to:

- ipBlock:

cidr: 10.0.0.0/24

ports:

- protocol: TCP

port: 5978

- to:

- ipBlock:

cidr: 10.0.0.0/24

ports:

- protocol: TCP

port: 5979

Figure 11: NetworkPolicy Example

kubernetes for beginners – an introduction part 2 14

References

Cronjob. https://kubernetes.io/docs/concepts/workloads/

controllers/cron-jobs/. Accessed: 2019-10-12.

Daemonset. https://kubernetes.io/docs/concepts/workloads/

controllers/daemonset/. Accessed: 2019-10-12.

Jobs - run to completion. https://kubernetes.io/docs/concepts/

workloads/controllers/jobs-run-to-completion/. Accessed:
2019-10-12.

Assigning pods to nodes. https://kubernetes.io/docs/concepts/

configuration/assign-pod-node/. Accessed: 2019-10-12.

Persistent volumes. https://kubernetes.io/docs/concepts/

storage/persistent-volumes/. Accessed: 2019-10-12.

Configure liveness, readiness and startup probes. https:

//kubernetes.io/docs/tasks/configure-pod-container/

configure-liveness-readiness-startup-probes/. Accessed:
2019-10-12.

Statefulsets. https://kubernetes.io/docs/concepts/workloads/

controllers/statefulset/. Accessed: 2019-10-12.

Taints and tolerations. https://kubernetes.io/docs/concepts/

configuration/taint-and-toleration/. Accessed: 2019-10-12.

Handshaking. https://en.wikipedia.org/wiki/Handshaking. Ac-
cessed: 2019-10-12.

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://en.wikipedia.org/wiki/Handshaking

	PersistentVolumes
	DaemonSets
	StatefulSets
	Jobs
	CronJobs
	Container Health Checks
	NetworkPolicies

