
Kubernetes For Beginners – An Introduction
Charles Wimmer

5 October 2019

This document provides an introduction to Kubernetes for the uniniti-
ated. It is intended to give application developers enough information
to get them started with Kubernetes deployments.

1 What is Kubernetes?

Figure 1: Kubernetes
Noun:
1. a captain, a steersman, a pilot, a

navigator
2. (figuratively) a guide

Kubernetes is a Greek word that means Captain or Pilot. It is also the
root of the word cybernetic and gubernatorial. Kubernetes, the soft-
ware, is designed to deploy, scale, and monitor distributed platforms.
It abstracts Machines, Networks, and Storage into a declarative API.
Kubernetes components running on nodes actively manage work-
loads to ensure the actual state meets the user’s declared intentions.
Kubernetes deploys and heals distributed applications for the user.

The primary interaction between the application author and
Kubernetes is through the Kubernetes API. The bulk of this docu-
ment introduces the Kubernetes objects used to describe the desired
state of application deployment. Objects are created by calls to the
Kubernetes API.

2 Pods

Pods are the fundamental deployed unit in Kubernetes.1 In compar- 1 Pods - kubernetes. https:

//kubernetes.io/docs/concepts/

workloads/pods/pod/. Accessed:
2019-10-05

ison to previous technologies, a pod feels a little like a virtual ma-
chine. A pod is composed of one or more containers — all processes
in a pod run in a container.

A container inside a pod is both a container image as well as all
runtime configuration information needed to start the container. A
container is a high-level concept wrapped around some primitive
Linux features. Each container runs processes inside a Linux names-
pace. Each of the Linux namespaces2 (Cgroup, Network, Mount, 2 namespaces(7) - linux manual page.

http://man7.org/linux/man-pages/

man7/namespaces.7.html. Accessed:
2019-10-05

PID, IPC, UTS, as well as User) is used to isolate each running pro-
cess from one another. An ENTRYPOINT is either defined in the
container image or declared in the pod definition.

Containers running in a pod share some characteristics with pro-
cesses running in virtual machines. Each container can see the other
when running commands like ps. Each container in a pod can see
daemons running in the same pod on localhost. All processes that
open connections outside of the pod share the same external IP ad-

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

kubernetes for beginners – an introduction 2

dress. Containers may optionally share filesystems. Application au-
thors may define filesystems that are private to individual containers,
and they may also define filesystems to share between containers.

Figure 2: Namespaces and Volumes in a
Pod

TODO: Insert an image of pod networking here

apiVersion: v1

kind: Pod

metadata:

name: pod-example

spec:

containers:

- name: ubuntu

image: ubuntu:trusty

command: ["echo"]

args: ["Hello World"]

Figure 3: Simple Pod example

3 Labels

Labels are key-value pairs attached to objects (Pods, for example)3. 3 Labels and selectors. https:

//kubernetes.io/docs/concepts/

overview/working-with-objects/

labels/. Accessed: 2019-10-05

Labels allow application authors to imply meaning to Kubernetes
objects. For example, they allow us to express which pods are in de-
velopment or which pods are in the front-end tier of an application.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

kubernetes for beginners – an introduction 3

Labels do not change the behavior of the core system. Kubernetes
stores and reports labels on objects. Kubernetes does not change its
behavior based on labels.

apiVersion: v1

kind: Pod

metadata:

name: pod-example

labels:

application: my-app

version: "v31"

release: "r42"

stage: production

spec:

containers:

- name: ubuntu

image: ubuntu:trusty

command: ["echo"]

args: ["Hello World"]

Figure 4: Pod with labels

kubectl label pods pod-example environment=production Figure 5: Label a pod

kubectl get pods -l environment=production Figure 6: Pod query with labels

4 ReplicationControllers

A ReplicationController is a template for managing any number of
copies of a pod4. It manages the pod lifecycle, including scaling up 4 Replication controller. https:

//kubernetes.io/docs/concepts/

workloads/controllers/

replicationcontroller/. Accessed:
2019-10-05

and down. It is useful for retaining targeted replication levels even
after destructive maintenance like an operating system upgrade or a
hard drive replacement.

ReplicationControllers exhibit characteristics that are sometimes
useful when debugging applications. Pods are associated with Repli-
cationControllers by labels and selectors. A ReplicationController
knows it has the appropriate number of replicas when a query to the
Kubernetes API returns the correct number of pods. The Replication-
Controller runs the equivalent of kubectl get pods -l <labels>.

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/

kubernetes for beginners – an introduction 4

Assume for a moment one wishes to save a pod for debugging
while retaining sufficient replicas for serving production load. If
one removes or replaces the label(s) observed by the Replication-
Controller, it will spin up another in order to converge toward the
desired number of replicas. The pod is available for later analysis; the
ReplicationController no longer manages the lifecycle.

TODO: Graphic depicting debug action

apiVersion: v1

kind: ReplicationController

metadata:

name: webserver-replicationcontroller

spec:

replicas: 3

selector:

app: nginx

template:

metadata:

name: webserver-pod

labels:

app: nginx

spec:

containers:

- name: nginx-container

image: nginx:1.7.10

ports:

- containerPort: 80

Figure 7: Replication Controller

5 Deployments

Deployments provide all the features of ReplicationControllers and
more5. Deployments orchestrate ReplicationControllers. In practice, 5 Deployments. https://kubernetes.

io/docs/concepts/workloads/

controllers/deployment/. Accessed:
2019-10-05

an application author would never need to use a ReplicationCon-
troller directly. They should choose Deployments instead.6

6 As a counter-example, Spinnaker
uses Replication Controllers to scale
applications up and down.

Unlike Replication Controllers, Deployments support rolling up-
grades of container versions and config parameters. Deployments
may be updated to start the rollout of a new version of a Pod. The
Deployment’s controller will create a new ReplicationController with
the new version. It will manage the scale-up and scale-down of new
and old controllers until the Pods are all upgraded.

TODO: Image to describe upgrade

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

kubernetes for beginners – an introduction 5

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.7.10

ports:

- containerPort: 80

Figure 8: Deployment

kubernetes for beginners – an introduction 6

6 ConfigMaps

ConfigMaps are used to store configuration for an application7. A 7 Configure a pod to use a configmap.
https://kubernetes.io/docs/

tasks/configure-pod-container/

configure-pod-configmap/. Accessed:
2019-10-05

configuration item may be expressed as either entire configuration
files or as key-value pairs, such as environmental variables.

Data in ConfigMaps may be used directly to populate environ-
mental variables for containers. Data in Configmaps may also be
materialized as a file in a container by way of a ConfigMap Volume.

Beginning with Figure 9, we see some examples of ConfigMap
usage.

apiVersion: v1

kind: ConfigMap

metadata:

name: game-config-3

data:

game-special-key: |

enemies=aliens

lives=3

enemies.cheat=true

enemies.cheat.level=noGoodRotten

secret.code.passphrase=UUDDLRLRBABAS

secret.code.allowed=true

secret.code.lives=30

Figure 9: ConfigMap

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

kubernetes for beginners – an introduction 7

apiVersion: v1

kind: Pod

metadata:

name: game-test-pod

spec:

containers:

- name: game-container

image: k8s.gcr.io/busybox

command: ["/bin/sh", "-c", "env"]

env:

Define the environment variable

- name: SEKRET_PASSPHRASE

valueFrom:

configMapKeyRef:

The ConfigMap containing the value you want to assign

to SEKRET_PASSPHRASE

name: game-config-3

Specify the key associated with the value

key: secret.code.passphrase

restartPolicy: Never

Figure 10: Pod using ConfigMap as
environmental variable

apiVersion: v1

kind: Pod

metadata:

name: game-test-pod

spec:

containers:

- name: game-container

image: k8s.gcr.io/busybox

command: ["/bin/sh", "-c", "ls /etc/config/"]

volumeMounts:

- name: config-volume

mountPath: /etc/config

volumes:

- name: config-volume

configMap:

Provide the name of the ConfigMap containing the files you

want to add to the container

name: game-config-3

restartPolicy: Never

Figure 11: Pod using ConfigMap as file

kubernetes for beginners – an introduction 8

apiVersion: v1

kind: Pod

metadata:

name: game-test-pod

spec:

containers:

- name: game-container

image: k8s.gcr.io/busybox

command: ["/bin/sh","-c","cat /etc/config/keys"]

volumeMounts:

- name: config-volume

mountPath: /etc/config

volumes:

- name: config-volume

configMap:

name: game-config-3

items:

- key: secret.code.passphrase

path: keys

restartPolicy: Never

Figure 12: Pod using ConfigMap item
as file

7 Secrets

Application authors use Secret objects for storing items such as pass-
words, keys, and tokens8. Secrets are marginally safer and more 8 Secrets. https://kubernetes.

io/docs/concepts/configuration/

secret/. Accessed: 2019-10-05

flexible than ConfigMaps for these cases.
A Secret is similar to a ConfigMap with a few exceptions. The sen-

sitive fields in a Secret are Base64 obfuscated when reading from the
API. Secrets are encrypted with a symmetric key by the Kubernetes
APIserver and stored in the etcd database.

Similar to ConfigMaps, the Kubelet materializes the contents of
Secret objects on a container’s file system. Unlike ConfigMaps, the
Kubernetes scheduler validates Secret existence at Pod scheduling
time. If an application author defines a Pod with a missing Secret, the
Pod will never get scheduled. When an application author defines a
Pod with a missing ConfigMap, the Pod will start without the file.

Another limitation of Secrets that an application author must
keep in mind is the limited storage capacity. Unlike ConfigMaps,
Kubernetes limits the size of a Secret to 1MB. The limitation is in
place for two reasons. First, to limit the likelihood of a DOS on the
Kubernetes API. Second, to allow Kubelet implementations that
never materialize the secret material on the Node’s filesystem.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

kubernetes for beginners – an introduction 9

kind: Secret

apiVersion: v1

metadata:

name: dotfile-secret

data:

.secret-file: dmFsdWUtMg0KDQo=

kind: Pod

apiVersion: v1

metadata:

name: secret-dotfiles-pod

spec:

volumes:

- name: secret-volume

secret:

secretName: dotfile-secret

containers:

- name: dotfile-test-container

image: k8s.gcr.io/busybox

command:

- ls

- "-l"

- "/etc/secret-volume"

volumeMounts:

- name: secret-volume

readOnly: true

mountPath: "/etc/secret-volume"

Figure 13: Secret

kubernetes for beginners – an introduction 10

8 Services

Pods are mortal. Kubernetes starts and stops Pods when a deploy-
ment does a rolling upgrade, for example. They fail when hardware
fails. In a distributed system or a microservice architecture, compo-
nents must be able to access consistently other components upon
which they depend.

Services provide this consistency. Services are persistent references
to a group of pods performing the same function9. Services publish 9 Service. https://kubernetes.io/

docs/concepts/services-networking/

service/. Accessed: 2019-10-05

DNS records as a discovery mechanism.
Services are associated with Pods via a Label. Application authors

configure Services with a NodeSelector. Pods become members of a
Service if their Labels match the Service’s NodeSelector.

Application authors may consider Services as if they were load
balancers internal to Kubernetes. They act as a VIP layer for an appli-
cation.

In addition to referring to private pods as a Service, a Service
object may refer to an external service either by IP address or by DNS
record.

kind: Service

apiVersion: v1

metadata:

name: my-service

namespace: dev

spec:

selector:

app: MyApp

ports:

- protocol: TCP

port: 80

targetPort: 9376

Figure 14: Service backed by Pods

The service in Figure 15 has no selector. There is no implicit end-
point object created.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

kubernetes for beginners – an introduction 11

kind: Service

apiVersion: v1

metadata:

name: my-service

namespace: qa

spec:

ports:

- protocol: TCP

port: 80

targetPort: 9376

--

kind: Endpoints

apiVersion: v1

metadata:

name: my-service

subsets:

- addresses:

- ip: 1.2.3.4

ports:

- port: 9376

Figure 15: Service external to cluster,
defined by IP address

The service in Figure 16 has no selector. DNS will contain a
CNAME to external DNS

kind: Service

apiVersion: v1

metadata:

name: my-service

namespace: prod

spec:

type: ExternalName

externalName: my.database.example.com

Figure 16: Service external to cluster,
aliased to DNS entry

9 Volumes

Volumes expose persistent and ephemeral storage to pods10. The 10 Volumes. https://kubernetes.io/

docs/concepts/storage/volumes/.
Accessed: 2019-10-05

lifecycle of a Volume is the same as the Pod that encloses it.
Kubernetes Volumes differ from the Docker feature of the same

name. It is important to understand these differences.

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

kubernetes for beginners – an introduction 12

A Volume is a directory, possibly with some data in it, accessible
to the containers in a pod.

Some example Volume implementations include:

• awsElasticBlockStore

• rds

• glusterfs

• nfs

• iscsi

• gcePersistentDisk

• hostPath

apiVersion: v1

kind: Pod

metadata:

name: test-ebs

spec:

containers:

- image: k8s.gcr.io/test-webserver

name: test-container

volumeMounts:

- mountPath: /test-ebs

name: test-volume

volumes:

- name: test-volume

This AWS EBS volume must already exist.

awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

Figure 17: Volumes

10 Namespaces

Namespaces provide a mechanism for logical grouping of Kubernetes
objects11. Application authors may think of Namespaces as multiple 11 Namespaces. https://kubernetes.

io/docs/concepts/overview/

working-with-objects/namespaces/.
Accessed: 2019-10-05

virtual clusters backed by a single physical cluster. It allows for iso-
lation of workloads between users, groups, projects, or development
environments.

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

kubernetes for beginners – an introduction 13

Namespaces provide isolation of workloads by providing a sepa-
rate scope for Names. A Deployment object by the same name may
exist in multiple namespaces. Each Namespace may be allocated a
ResourceQuota, thus limiting the use of physical resources of Nodes.

Namespaces are also scoped in DNS. Each Namespace effectively
controls its subdomain of the cluster DNS. For example, a service in a
namespace has a DNS name of the form: <service>.<namespace>.svc.cluster.local.

There are Kubernetes components that are not scoped by Names-
paces but are rather scoped at the Cluster level. Some examples of
non-Namespaced objects are:

• Nodes

• PersistentVolumes

For a difinitive list of each type, use these commands:

In a namespace
kubect l api−resources −−namespaced= t rue

Not in a namespace
kubect l api−resources −−namespaced= f a l s e

11 Architecture

kubernetes for beginners – an introduction 14

Figure 18: Kubernetes Architecture

kubernetes for beginners – an introduction 15

11.1 APIserver

The APIserver component is the heart of Kubernetes. All compo-
nents communicate to one another via the APIserver. It enforces
authentication and authorization of API calls. It is the component
that persists to the etcd databse.

11.2 Scheduler

The Scheduler component watches for workloads and decides where
they should run. It is the component that binds Pods to Nodes.

11.3 Controller-manager

The Controller-manager component is where the core control loops
are located. For example:

• Replication Controller

• Endpoints Controller

• Namespace Controller

In addition to controllers, it also manages all the life cycle functions
of the cluster.

• event garbage collection

• terminated pod garbage collection

• cascading deletion garbage collection

• node garbage collection

11.4 Service Proxy

The ServiceProxy watches for changes to services and pods. It keeps
the network configuration up to date.

11.5 Container Runtime

The container runtime is responsible for launching and configuring
processes inside Linux namespaces on Nodes. Docker and cri-o are
the currently supported Container Runtimes. rkt is also supported,
but it has been deprecated.

kubernetes for beginners – an introduction 16

11.6 Kubelet

Kubelet is the component that runs on each distributed Node that
provides resources. Kubelet watches the API for the desired state of
the Node. Also, it assures each of the assigned Pods is running. It
communicates with the Container Runtime on the system over the
provided API to affect state changes to containers and query status.
Kubelet is responsible for running the health checks defined in each
Pod specification. Also, Kubelet retrieves metrics about resource
utilization from the kernel.

References

Configure a pod to use a configmap. https://kubernetes.io/docs/

tasks/configure-pod-container/configure-pod-configmap/.
Accessed: 2019-10-05.

Deployments. https://kubernetes.io/docs/concepts/workloads/

controllers/deployment/. Accessed: 2019-10-05.

Labels and selectors. https://kubernetes.io/docs/concepts/

overview/working-with-objects/labels/. Accessed: 2019-10-
05.

namespaces(7) - linux manual page. http://man7.org/linux/

man-pages/man7/namespaces.7.html. Accessed: 2019-10-05.

Namespaces. https://kubernetes.io/docs/concepts/overview/

working-with-objects/namespaces/. Accessed: 2019-10-05.

Pods - kubernetes. https://kubernetes.io/docs/concepts/

workloads/pods/pod/. Accessed: 2019-10-05.

Replication controller. https://kubernetes.io/docs/concepts/

workloads/controllers/replicationcontroller/. Accessed:
2019-10-05.

Secrets. https://kubernetes.io/docs/concepts/configuration/

secret/. Accessed: 2019-10-05.

Service. https://kubernetes.io/docs/concepts/

services-networking/service/. Accessed: 2019-10-05.

Volumes. https://kubernetes.io/docs/concepts/storage/

volumes/. Accessed: 2019-10-05.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

	What is Kubernetes?
	Pods
	Labels
	ReplicationControllers
	Deployments
	ConfigMaps
	Secrets
	Services
	Volumes
	Namespaces
	Architecture

